%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-19/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{defn}{Definition} \newtheorem{fact}{Fact} \theoremstyle{remark} \newtheorem*{qstn}{Question} \newtheorem*{rmrk}{Remark} \theoremstyle{namedthrm} \newtheorem{thrm}{Theorem} \title{Monochromatic Arithmetic Forests} \author{Tom C. Brown\footnote{Department of Mathematics and Statistics, ÓÈÎïÊÓÆµ, Burnaby, British Columbia, V5A 1S6, Canada. \texttt{tbrown@sfu.ca}}} \maketitle \begin{center}{\small {\bf Citation data:} T.C. {Brown}, \emph{Monochromatic arithmetic forests}, Paul Erdos and His Mathematics (A.~Sali, M. Simonovits, and V.T. S\'os, eds.), Janos Bolyai Mathematical Society, Budapest, Hungary, 1999, pp.~42--44.}\bigskip\end{center} \begin{defn}\label{d1} If $A = \{a_10$ are given, then for sufficiently large $n$, if $S\subseteq P([1,n])$ and $|S| > \epsilon|P([1,n])|$, $S$ must contain an arithmetic chain of length $k$. Is it true that for sufficiently large $n$, if $S\subseteq P([1,n])$ and $|S|>\epsilon |P([1,n])|$, $S$ must contain arithmetic copies of all $k$-vertex rooted forests?\end{qstn} \begin{rmrk} Some related results, and additional references, can be found in \cite{swanepoel+pretorius1997} and \cite{swanepoel+pretorius1994}. \end{rmrk} \bibliographystyle{amsplain} \bibliography{tom-all} \end{document}